I would not want you to suppose that my rejection of Allen Forte's theory of pitch-class sets implies a rejection of the notion that there can be such a thing as a pitch-class set. It is only when one defines everything in terms of pitch-class sets that the concept becomes meaningless.
If... [Alban] Berg departs so radically from tradition, through his substitution of a symmetrical partitioning of the octave for the asymmetrical partionings of the major/minor system, he departs just as radically from the twelve-tone tradition that is represented in the music of Schoenberg and Webern, for whom the twelve-tone series was always an integral structure that could be transposed only as a unit, and for whom twelve-tone music always implied a constant and equivalent circulation of the totality of pitch classes.
Every bit of theorizing I've ever done, including my interest in Berg, has come as a consequence of discoveries I made as a composer and interests that I developed as a composer. I never thought of my theory as being a kind of irrelevant activity to my composing.